2D-NMR: Part VI*. 2 D-INADEQUATE Spectral Analysis and Crystal Structure of Tricyclo[7.3.1.02'7]tridecane

Gerhard Buchbauer³, Angela Fischlmayr^{3, 1}, Ernst Haslinger^{b,} Wolfgang Robien^b, Horst Völlenkle^e, and Carla Wassmann

~Institute of Pharmaceutical Chemistry, University of Vienna, A-1090 Wien, Austria

^b Institute of Organic Chemistry, University of Vienna, A-1090 Wien, Austria ° Institute of Mineralogy, Crystallography and Structural Chemistry, Technical University of Vienna, A-1060 Wien, Austria,

(Received 24 October 1983. Accepted 20 November 1983)

 $2-Hydroxy-13-oxo-tricyclo[7.3.1.0^{2,7}]tridecane derivatives can be obtained by reaction of cyclohexanone with alcohols under alkaline conditions. The$ unambiguous assignment of all signals of the ${}^{1}H$ -NMR- and ${}^{13}C$ -NMR-spectrum
is possible by $2D-{}^{1}H-{}^{13}C$ -shift correlation and $2D-IMADEQUATE$. Compound **I** crystallizes in space group $P2_1/n$ with $a = 8.518(1), b = 14.789(2), c = 19.321$ (2) Å, $\gamma = 94.91 ~ (1)^{\circ}, Z = 8, D_{\rm c} = 1.22 {\rm\,Mg\,cm^{-3}}$. The structure refined to $R =$ 0.100 and $R_w = 0.097$ for 1719 observed reflections. Two independent molecules form. centrosymmetrie hydrogen-bonded dimers.

*(Keywords: 2-Hydroxy-13-oxo-tricyclo[7.3.1.02'7]tridecane; 2D-NMR; 1H-*¹³C-Shiftcorrelation; INADEQUATE; Crystal structure)

2D-NMR, 6. Mitt.: 2D-INADEQUATE Spektrum und Kristallstruktur yon einem Tricyclo [7.3.1.02'7]tridecanderivat

Das ¹³C-NMR-Spektrum von 2-Hydroxy-13-oxo-tricyclo[7.3.1.0^{2,7}] tridecan kann mit Hilfe eines INADEQUATE Experimentes eindeutig zugeordnet werden. Die Kristallstrukturdaten dieser Verbindung werden besehriebem

^{*} Part V: *Haslinger E., Kalchhauser H., Robien W., Steindl H.,* Monatsh. Chem. 115, 597 (1984).

Introduction

Continuing earlier NMR-studies of alicyclic ringsystems $3-8$ we have analyzed the ¹H-, the ¹³C-NMR-spectrum and done a crystal structure determination of 2-hydroxy-8-methyltricyclo^{[7.3.1.02,7}]tridecan-13one (1). 1 can be obtained by condensation of acetaldehyde with cyclohexanone under alkaline conditions^{9,10}. Its structure was determined by chemical methods as well as by spectroscopic investigations $\overset{\circ}{\mathfrak{g}}$ -17. IR-measurements show that in chloroform and also in cyclohexane solutions intramolecular hydrogen bonding exists 18 . We have unambiguously assigned the ¹H- and ¹³C-resonances and tried to gain information about hydrogen bonding in the solid state by x-ray measurements.

Results and Discussion

1. NMR-Spectra

Neither in the proton- nor in the carbon NMR-spectrum of 1 the assignments of the signals can be made straightforward. This is due to the fact that the signals of the aliphatic hydrogens are overlapping strongly even at 250 MHz . Only the dublett of the CH₃-group at $\delta = 0.9$ ppm can be assigned immediately (Fig. 1). Fig. 1 shows the ¹³C-NMR-spectrum of 1 which reveals a similar situation, although the COsignal and the resonances at 15.26 (CH₃) and 59.4 ppm (C₁) can be assigned by chemical shift considerations and by their multiplicity obtained from an off-resonance decoupled spectrum. The only way to get an unambiguous assignment of the ^{13}C signals, even when the structure of the compound is not known, is via a 2D-INADEQUATEexperiment $19-23$, which yields the carbon-carbon-connectivity. During this experiment the double-quantum frequency of directly bonded (thus coupled) 13 C 13 C-pairs is used to identify adjacent carbons. The assignments of the ${}^{1}H$ - and ${}^{13}C$ -resonances are given in Table 1, the ¹³C- 13 C-coupling constants in Table 2. Fig. 2 shows the 2D-INADEQUATE of 1. Parallel to the frequency coordinate F2, the conventional proton decoupled 13C-spectrum is shown. The signals 1 and

Table 1. *Chemical shifts of 1 in ppm.* The proton chemical shift values are taken from cross sections of the 2D-shift correlation

2 are outside the spectral region. The assignment is clear and starts with signal 14, a quartett which belongs to the methyl group of 1, which leads to two connecting sequences, shown in Scheme 1. The multiplicities of the carbon signals are indicated by capital letters ($Q =$ quartett, $T =$ triplett, $D =$ dublett).

742 **G. Buchbauer** *et al.*:

Table 2.¹³C $-$ ¹³C-coupling constants of **1** (\pm 0,5 Hz). The coupling constants are ${\rm taken\ from\ a\ 1D\text{-}INADEQUATE\ experiment}$

Fig, 2. 2D-INADEQUATE-spectrum of I

2D-NMR 743

In sequence 1, the quartett Q 14 and the doublett D 3 have already been assigned to the $CH₃$ -group and the $C₁$ by multiplicity resp. chemical shift arguments. With this information the connectivity sequence 1 can be unambiguously assigned to the appropriate structural fragment in the molecule (Scheme 1). No connectivity information about C_2 and C_{13} could be obtained because their frequencies are beyond the spectral width of the experiment. The symmetrical sequence 2 contains T 7 with a chemical shift of 35.8 ppm indicating the neighborhood of a OH-group in β -position. T 7 can therefore be assigned to CH_2 in position 3 and both sequences can be put together as shown in Scheme 1. We could not get a connectivity signal for T 11 and T 10. This may be explained by the small chemical shift difference of the carbon signals leading to an AB- rather than an AX-spin system and to signal distortions in the INADEQUATE experiment. Having obtained the unambiguous assignment of all 13Csignals a 2D-¹H-¹³C-shift correlation experiment²⁴ was made (Fig. 1). The chemical shifts obtained for all protons are given in Table 1.

2. Crystal Structure Determination

A single crystal of compound 1 (0.15 \times 0.15 \times 0.30 mm) was analysed on a Philips PW 1 100 four-circle diffractometer at ambient temperature. The cell dimensions in Table 3 were determined by a least squares fit to the positions of 74 centered reflections. Data collection was carried out by the ω -2 θ scan technique between 2 and 22° in ω with graphite-monochromated MoK α radiation. The data were corrected for variation in reference reflections and *Lorentz* and polarisation effects but not for absorption. 1719 unique reflections with $F > 3\sigma(F)$ were retained for use in the analysis; 1257 were considered unobserved. The structure was solved by direct methods $(MULTAN²⁵)$ and refined by full-matrix least squares (SHELX 26) with isotropic temperature factors for the non-hydrogen atoms. All H atoms bonded to carbon were included in the structure factor calculation at idealized positions $(C-H =$ 1.08 Å) sharing two common temperature factors in the refinement $[U(\text{CH},$ $CH₂$ = 0.066 (4) and U (CH₃) = 0.080 (10)]. The positional parameters of the hydroxy H atoms were refined freely and are included in Table 4. The terminal value of R was 0.100 with $R_w = 0.097$ for the 1719 observed reflections. Weights were given by $w = k [\sigma(F_0) + 0.0006 (F_0^2)]^{-1}$ and scattering factors were taken from the International Tables for X-ray Crystallography²⁷. The final parameters are listed in Table 4", bond lengths and angles in Table 5.

The two independent molecules in the unit cell are linked together by two hydrogen bonds, $O(1) - H(1) \ldots O(22)$ and $O(2) \ldots H(21) - O(21)$, building up pseudo centric dimers. The two m olecules itself are identical within limits of error, which can be recognized by comparing column I and II in Table 5. The carbon framework can be considered to consist of three cyclohexane rings, two forming trans-deealine and the third connected in an adamantane-like configuration (Fig. 3).

^{*} Copies of the list of structure factors may be obtained through one of the authors (H, V) .

Table 3. *Crystal data*

Table 4. *Positional parameters* $(\times 10^4$ *for* O and C, $\times 10^3$ *for* H) and isotropic *temperature parameters* $(A² \times 10³)$ *for refined atoms*

	I	$_{\rm II}$
$O(1)-C(2)$	1.441	-1.435
$O(1)-H(1)$	0.945	1.000
$O(2) - C(13)$	1.233	1.246
$C(1)-C(2)$	1.558	1.552
$C(1)-C(12)$	1.546	1.537
$C(1) - C(13)$	1.492	1.490
$C(2) - C(3)$	1.523	1.514
$C(2)-C(7)$	1.539	1.541
$C(3)-C(4)$	1.534	1.528
$C(4)-C(5)$	1.518	1.515
$C(5)-C(6)$	1.524	1.509
$C(6)-C(7)$	1.529	1.535
$C(7)-C(8)$	1.537	1.533
$C(8)-C(9)$	1.548	1.550
$C(8)-C(14)$	1.532	1.546
$C(9)-C(10)$	1.562	1.541
$C(9)-C(13)$	1.475	1.479
$C(10)-C(11)$	1.514	$_{1.512}$
$C(11) - C(12)$	1.543	1.536
$O(1) \ldots O(22)$	2.897	2.830
$H(1) - O(1) - C(2)$	97	104
$C(2) - C(1) - C(12)$	117.3	118.2
$C(2) - C(1) - C(13)$	106.7	106.5
$C(12) - C(1) - C(13)$	107.5	107.2
$O(1)-C(2)-C(1)$	105.9	106.1
$O(1)-C(2)-C(3)$	110.2	109.8
$O(1)-C(2)-C(7)$	106.5	104.6
$C(1) - C(2) - C(3)$	110.2	112.1
$C(1) - C(2) - C(7)$	112.3	112.5
$C(3)-C(2)-C(7)$	111.0	111.3
$C(2) - C(3) - C(4)$	111.7	111.8
$C(3)-C(4)-C(5)$	110.9	111.0
$C(4)-C(5)-C(6)$	112.4	111.5
$C(5)-C(6)-C(7)$	111.0	111.6
$C(2) - C(7) - C(6)$	110.0	110.0
$C(2) - C(7) - C(8)$	110.7	110.7
$C(6)-C(7)-C(8)$	113.3	114.1
$C(7)-C(8)-C(9)$	113.9	114.3
$C(7)-C(8)-C(14)$	113.2	112.8
$C(9)-C(8)-C(14)$	110.7	110.9
$C(8)-C(9)-C(10)$	115.9	116.1
$C(8)-C(9)-C(13)$	109.8	108.6
$C(10)-C(9)-C(13)$	104.6	106.0
$C(9) - C(10) - C(11)$	115.7	115.9
$C(10) - C(11) - C(12)$	113.2	112.2
$C(11) - C(12) - C(1)$ $O(2) - C(13) - C(1)$	115.2 122.6	115.9
$O(2) - C(13) - C(9)$	122.8	122.5 123.3
$C(1) - C(13) - C(9)$	114.5	114.1
$O(1) - H(1) \dots O(22)$	163	177

Table 5. *Bond lengths (A) and angles* (°); *the e.s.d, 's for nvn-hydrogen atoms are typically 0.008-0.010 A and 0.4-0.7°, for values involving H atoms 0.07 A and 5°*

Experimental

Melting points were determined on a *"Kofler-Heiztisch-Mikroskop";* they are not corrected. GC-analysis have been done on a Carlo Erba gaschromatograph; column: 30 m SE 30, glas capillary; inject, temp. 250°, column temp. $140-280^{\circ}/4^{\circ}$ per minute. The recording of the mass spectra by Dr. *A. Nikiforov* (Institute of Organic Chemistry, University of Vienna) on a Varian MAT CH-7 (70eV) is gratefully acknowledged. All NMR-spectra have been measured on a Bruker WM 250 spectrometer equipped with a 80 K ASPECT-2000 computer.

This work was supported by the "Fonds zur Förderung der wissenschaftlichen *Forsehung"* Project 2178 (for X-ray) and Project 4009 (for NMI~ measurements).

2-Hydroxy-8-methyltrieyclo[7.3.1.02'7]tridecan-13-one (1)

a) 30 g $(0,3\text{ mol})$ freshly distilled cyclohexanone have been added to a solution of sodium ethoxide in dry $EtOH$ (13.8 g = 0.6 mol sodium and 580 ml = $10 \text{ mol dry } E t \text{OH}$) at room temperature. The mixture has been refluxed for a period of 12h and then dispensed from the solvent. The residual liquid was neutralized with HCl and extracted with ether. After drying with Na_2SO_4 the solvent has been evaporated, the residue mixed with some acetone and cooled for crystallization. Yield: 8.0g (35.3%); white crystals, m.p. 162 °C. $C_{14}H_{22}O_2$ (222.33).

$2D-NMR$ 747

 $MS(m/e; r. I.): 222(M⁺, 8); 125(100); 124(94); 98(17), 2D-IMADEQUATE:$ 680 mg 1 in 2 ml solvent (70% CDCl₃ + 30% ¹²CD₃OD), 10 mm tube. Parameters: 90°-pulse, ¹³C: 26,5 μ s, D1 = 6s, D2 = 7,67 ms (1/4 J for $J = 32,6$ Hz), $DP = 2W$, $NS = 192$, $SW_2 = 5000$ Hz. Data matrix: $4K \times 128$, *Fourier* transformation: $4 K \times 512$. Recording time: ~ 44 h.

 $2D^{-1}H-{}^{13}C$ -shift correlation: 100 mg 1 in 0,5 ml solvent (vide supra), 5 mm tube. Parameters: 90° -pulse: 1 H: $19.5 \,\mu s$, 90° -pulse 13 C: $18.1 \,\mu s$. $D1 = 3 s$, $D2=4$ ms $(1/2J$ for $J=125$ Hz); $D3=2$ ms $(1/4J)$ for recording all multiplicities); DP: 2W, $SW_1 = 500 Hz$, $SW_2 = 3200 Hz$. Data matrix: $2K \times 128$.

b) 6 g (0.2 mol) sodium hydride (80% oily suspension) have been added to 720 g (10 mol) dry *THF* (drying procedure: boiling with KOH, then boiling with LiAlH₄ and distillation from LiAlH₄) and afterwards mixed with 19.6 g (0.2 mol) freshly distilled cyclohexanone. Upon this 4.4 g (0.1 mol) acetaldehyde in 160 ml dry *THF* have been added dropwise during 8h with stirring at room temperature. After further 8 h reaction time the alkaline solution has been worked up in the manner described above. Yield: 1.45 g (6.5%).

References

- *'i Fisehlmayr A.,* work for diploma, University of Vienna, 1983.
- *2 Wassmann C.,* work for diploma, University of Vienna, 1983.
- *3 Haslinger E., Kalchhauser H., Robien W.,* Monatsh. Chem. 113, 805 (1982).
- *4 Buchbauer G., Haslinger E., Robien W., Vitek R.,* Monatsh. Chem. 114, 113 (1983).
- *5 Buehbauer G.,* Monatsh. Chem. 109, 289 (1978).
- *6 Buchbauer G., Wiedenhorn M.,* Monatsh. Chem. 111, 1299 (1980).
- *v Buehbauer G., Hell I., Schindler K.,* Monatsh. Chem. 112, 841 (1981).
- *s Spreitzer H., Buchbauer G.,* in preparation.
- ⁹ Barbulescu N., Rev. Chim. (Bukarest) 7, 45 (1956).
- ¹⁰ Plesek J., Munk P., Coll. Czech. Chem. Comm. 22, 1596 (1957); Chem. Listy 51,633 (1957).
- *11 Barbulescu N.,* Anal. Univ. "C. I. Parhon" Bukarest, Ser. Stiintelor Naturii 7, Nr. 20, 79 (1958) and 6, Nr. 13, 101 (1957); Chem. Zentralbl. 1960, 11642.
- *12 Barbulescu N., Leca-Minicuta M., Stanescn Gr.,* Rev. Chim. (Bukarest) 16, 76 (1965).
- *13 Barbulescu N., Leca M,* Rev. Roum. Chim. 19, 233 (1974).
- *14 Barbulescu E., Barbuleseu N., Tilicenko M. N.,* Rev. Chim. (Bukarest) ll, 631 (1961).
- ¹⁵ Julia S., Varech D., Bull. Soc. Chim. France 1959, 1127.
- ¹⁶ Julia S., Varech D., C. R. hebd. Seances Acad. Sci. 246, 1559 (1958).
- ¹⁷ Julia S., Varech D., Bürer Th., Günthard Hs. H., Helv. Chim. Acta 43, 1623 (1960).
- ¹⁸ *Pitha J., Plesek J., Horak M., Coll. Czech. Chem. Comm.* **26**, 1209 (1961).
- 19 *Bax A., Freeman R., Kempsell S. P.,* J. Amer. Chem. Soc. 102, 4849 (1980).
- ²⁰ Freeman R., Bax A., Frenkiel T. A., Levitt M. H., J. Magn. Res. 43, 478 (1981).
- ²¹ Bax A., Freeman R., Frenkiel T. A., J. Amer. Chem. Soc. **103**, 2101 (1981).
- *22 Benn R., Giinther H.,* Angew. Chem. Int. Ed. 22, 350 (1983).
- ²³ Freeman R., Frenkiel T. A., Rubin M. B., J. Amer. Chem. Soc. 104, 5545 (1982).
- *24 Freeman R., Bodenhausen* G., J. Magn. Res. 28, 471 (1977).

748 G. Buchbauer *etal.:* 2D-NMR

- *25 Main P.,* MULTAN 78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England, 1978.
- *2~ Sheldrick G. M.,* SHELX. A Program for Crystal Structure Determination. Univ. of Cambridge, 1976.
- ²⁷ International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press. 1974.